书法天才科教网 _ www.softcov.com
首页 校园生活 人文学科 理工学科 外语学习 学习帮助 招生考试 资格考试 考研相关 公务员 其它学科
栏目导航
首页 > 理工学科 > 正文

初中数学应用题和答案

作者:用户发布来源:书法天才科教网发布时间:2018-6-14


guiqiu


网友交流

【预测题】1、已知,AB=4,在平行四边形OABC中,∠OCA=90°,OA=5,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.
(1)求直线AC的解析式;
(2)试求出当t为何值时,△OAC与△PAQ相似;
(3)若⊙P的半径为 ,⊙Q的半径为 ;当⊙P与对角线AC相切时,判断⊙Q与直线AC、BC的位置关系,并求出Q点坐标。

解:(1)
(2)①当0≤t≤2.5时,若∠OAQ=90°时,P在OA上,
故此时△OAC与△PAQ不可能相似.
当t>2.5时,①若∠APQ=90°,则△APQ∽△OCA,

∵t>2.5,∴ 符合条件.
②若∠AQP=90°,则△APQ∽△∠OAC,

∵t>2.5,∴ 符合条件.
综上可知,当 时,△OAC与△APQ相似.
*⊙Q与直线AC、BC均相切,Q点坐标为( )。
【预测题】2、如图,OC所在的直线为y轴,OA所在的直线为x轴,以矩形OABC的顶点O为原点,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,将△BDA沿BD翻折,在OA上取一点D,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

解:(1) ; .(2)在 中, ,

设点 的坐标为 ,其中 , 顶点 ,
∴设抛物线解析式为 .
①如图①, ,当 时, .
解得 (舍去); . . .解得 .
抛物线的解析式为

②如图②, ,当 时, .
解得 (舍去).

③当 时, ,这种情况不存在.
综上所述,符合条件的抛物线解析式是 .
(3)存在点 ,使得四边形 的周长最小.
如图③,作点 关于 轴的对称点 ,作点 关于
轴的对称点 ,连接 ,分别与 轴、 轴交于
点 ,则点 就是所求点.
, , .
. .又 ,此时四边形 的周长最小值是 .

【预测题】3、如图,在边长为2的等边△ABC中,AD⊥BC,点P为边AB 上一个动点,过P点作PF//AC交线段BD于点F,交线段CD于点G,作PG⊥AB交AD于点E,设BP=x.
(1)①试判断BG与2BP的大小关系,并说明理由;
②用x的代数式表示线段DG的长,并写出自变量x的取值范围;
(2)记△DEF的面积为S,求S与x之间的函数关系式,并求出S的最大值;
(3)以P、E、F为顶点的三角形与△EDG是否可能相似?如果能相似,如果不能,请求出BP的长,请说明理由。

解:(1)①在等边三角形ABC中,∠B=60°,∵PG⊥AB,
∴∠BGP=30°,∴BG=2BP.
②∵PF//AC,∴△PBF为等边三角形,∴BF=PF=PB=x.
又∵BG=2x,BD=1,∴0<2x-1≤1,∴DG=2x-1,∴ .
(2)S= DE×DF=
=
当 时,若∠PFE=Rt∠, .
(3)①如图1,则两三角形相似,
此时可得DF=DG

解得: .
②如图2,则两三角形相似,若∠PEF=Rt∠,
此时可得DF= EF= BP,
即 .解得: .

【预测题】4、如图,二次函数 的图像经过点 ,
且与 轴交于点 .
(1)试求此二次函数的解析式;
(2)试证明: (其中 是原点);
(3)若 是线段 上的一个动点(不与 、 重合),过 作 轴的平行线,分别交此二次函数图像及 轴于 、 两点,使 ?若存在,请求出点 的坐标;若不存在,试问:是否存在这样的点 ,请说明理由。

解:(1)∵点 与 在二次函数图像上,
∴ ,解得 ,
∴二次函数解析式为 .
(2)过 作 轴于点 ,又在 中,
∵ , ,则在 中, ,由(1)得 ,∴ .
(3)由 与 ,则 ,
设 ,可得直线 的解析式为 ,
∴ .∴ .
当 ,解得 (舍去),∴ .
当 ,存在满足条件的点,解得 (舍去),∴ .
综上所述,它们是 与 .

【预测题】5、如图1,BC=8厘米,在Rt△ABC中,点D在AC上,∠C=90°,CD=3厘米.点P、Q分别由A、C两点同时出发,速度为每秒k厘米,点P沿AC方向向点C匀速移动,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒 ,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,12),其顶点坐标是(4,y2的图象是抛物线的一部分,求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6=,过G作EF垂直于x轴,分别交y1、y2于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

解:(1)∵ ,CQ=x,CD=3,∴ .
图象如图所示.
(2)方法一: ,CQ=x,CP=8k-xk,
∴ .∵抛物线顶点坐标是(4,12),
∴ .解得 .则点P的速度每秒 厘米,AC=12厘米.
方法二:观察图象知,当x=4时,△PCQ面积为12.
此时PC=AC-AP=8k-4k=4k,CQ=4.∴由 ,得 .
解得 .则点P的速度每秒 厘米,AC=12厘米.
方法三:设y2的图象所在抛物线的解析式是 .
∵图象过*,(4,12),*,
∴ 解得 ∴ . ①
∵ ,CQ=x,CP=8k-xk,∴ . ②
比较①②得 .则点P的速度每秒 厘米,AC=12厘米.
(3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).②由⑵得 .(方法二, )
∵EF=y2-y1,
∵二次项系数小于0,∴EF= ,∴在 范围,当 时, 最大.
【预测题】6、如图, ,在 中, 、 分别是边 、
上的两个动点( 不与 、 重合),以 为边,且保持 ,在点 的异侧作正方形 .
(1)试求 的面积;
(2)当边 与 重合时,求正方形 的边长;
(3)设 , 与正方形 重叠部分的面积为 ,试求 关于 的函数关系式,并写出定义域;
(4)当 是等腰三角形时,请直接写出 的长。

解:(1)过 作 于 ,∵ ,∴ .
则在 中, ,∴ .
(2)令此时正方形的边长为 ,则 ,解得 .
(3)当 时, .
当 时, .
* .

【预测题】7、如图已知点A (-2,4) 和点B *都在抛物线 上.
(1)求 、n;
(2)向右平移上述抛物线,点B的对应点为B′,若四边形A A′B′B为菱形,记平移后点A的对应点为A′,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′ 的交点为点C,试在 轴上找点D,使得以点B′、C、D为顶点的三角形与 相似.

解:(1)根据题意,得: 解得
*四边形A A′B′B为菱形,则A A′=B′B= AB=5

=
∴ 向右平移5个单位的抛物线解析式为
(3)设D(x,0)根据题意,得:AB=5,
∵∠A=∠B B′A
ⅰ) △ABC∽△B′CD时,∴BD=6-x,∠ABC=∠B′CD , 由 得 解得x=3, ∴D*
ⅱ)△ABC∽△B′DC时,
∴ 解得 ∴

【预测题】8、如 图,AD=2,AB=8,A B⊥BC ,AD‖BC,已知直角梯形ABCD中,
CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以1cm/s的速度、沿B→A→D→C方向,向点C运动;动点Q从点C出发,以1cm/s的速度、沿C→D→A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

解:

在Rt△DCH中,

(2)①

经计算,PQ不平分梯形ABCD的面积


, -

【预测题】9、如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为( ,0), CAB=90°,AC=AB,顶点A在⊙O上运动.
(1)当点A在x轴上时,求点C的坐标;
(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;
(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;
(4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.

解:(1)当点A的坐标为*时,AB=AC= -1,点C的坐标为(1, -1);
当点A的坐标为(-1,0)时,AB=AC= +1,点C的坐标为(-1, +1);
(2)直线BC与⊙O相切,过点O作OM⊥BC于点M,∴∠OBM=∠BOM=45°,
∴OM=OB•sin45°=1,∴直线BC与⊙O相切
(3)过点A作AE⊥OB于点E
在Rt△OAE中,AE2=OA2-OE2=1-x2,
在Rt△BAE中,AB2=AE2+BE2=(1-x2) +( -x)2=3-2 x
∴S= AB•AC= AB2= (3-2 x)=
其中-1≤x≤1,
当x=-1时,S的最大值为 ,
当x=1时,S的最小值为 .
(4)①当点A位于第一象限时(如右图):
连接OA,并过点A作AE⊥OB于点E
∵直线AB与⊙O相切,∴∠OAB=90°,
又∵∠CAB=90°,∴∠CAB+∠OAB=180°,
∴点O、A、C在同一条直线上,∴∠AOB=∠C=45°,
在Rt△OAE中,OE=AE= .点A的坐标为( , )
过A、B两点的直线为y=-x+ .
②当点A位于第四象限时(如右图)
点A的坐标为( ,- ),过A、B两点的直线为y=x- .

【预测题】10、已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF‖AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

解:(1)解方程x2-10x+16=0得x1=2,x2=8
∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC
∴点B的坐标为*,点C的坐标为*
又∵抛物线y=ax2+bx+c的对称轴是直线x=-2
∴由抛物线的对称性可得点A的坐标为(-6,0)
(2)∵点C*在抛物线y=ax2+bx+c的图象上,∴c=8,将A(-6,0)、B*代入表达式,得
0=36a-6b+80=4a+2b+8 解得 a=-23b=*
∴所求抛物线的表达式为y=-23x2-83x+8
(3)依题意,AE=m,则BE=8-m,∵OA=6,OC=8,∴AC=10
∵EF‖AC ∴△BEF∽△BAC,∴EFAC=BEAB 即EF10=8-m8,∴EF=40-5m4
过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=45
∴FGEF=45 ∴FG=45•40-5m4=8-m
∴S=S△BCE-S△BFE=12(8-m)×8-12(8-m)(8-m)
=12(8-m)(8-8+m)=12(8-m)m=-12m2+4m
自变量m的取值范围是0<m<8
(4)存在.
理由:∵S=-12m2+4m=-12(m-4)2+8 且-12<0,
∴当m=4时,S有最大值,S最大值=8 ∵m=4,∴点E的坐标为(-2,0)
∴△BCE为等腰三角形.

【预测题】11、数学课上,张老师出示了问题1:

[来源:学科网ZXXK]

(1)经过思考,小明认为可以通过添加辅助线——过点O作OM⊥BC,垂足为M求解.你认为这个想法可行吗?请写出问题1的答案及 相应的推导过程;
(2)如果将问题1中的条件“四边形ABCD是正 方形,BC =1”改为“四边形ABCD是平行四边形,BC=3,CD=2,”其余条件不变(如图25-2),请直接写出条件改变后的函数解析式;
(3)如果将问题1中的条件“四边形ABCD是正方形,BC =1”进一步改为:“四边形ABCD是梯形,AD‖B C, , , (其中 , , 为常量)”其余条件不变(如图25-3),请你写出条件再次改变后 关于 的函数解析式以及相应的推导过程.

解:(1)∵四边形ABCD是正方形,∴OB=OD.
∵OM⊥BC,∴∠OMB=∠DCB= ,∴OM‖DC.
∴OM DC ,CM BC .∵OM‖DC,∴ ,
即 ,解得 .定义域为 .
(2) ( ).
(3) AD‖BC, , .
过点O作ON‖CD,交BC于点N,∴ ,∴ .
∵ON‖CD, ,∴ ,∴ .
∵ON‖CD,∴ ,即 .
∴ 关于 的函数解析式为 ( ).
【预测题】12、已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3) 在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象。请你结合这个新的图像回答:当直线y= x+b (b<k)与此图象有两个公共点时,b的取值范围.
解:(1)由题意得,Δ=16-8(k-1)≥0.∴k≤3.∵k为正整数,∴k=*.
(2)当k=1时,方程2x2+4x+k-1=0有一个根为零;
当k=2时,方程2x2+4x+k-1=0无整数根;
当k=3时,方程2x2+4x+k-1=0有两个非零的整数根.
综上所述,k=1和k=2不合题意,舍去;k=3符合题意.
当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位长度得到的图象的解析式为y=2x2+4x*
(3)设二次函数y=2x2+4x-6的图象与x轴交于A、B两点,则A(-3,0),B*.
依题意翻折后的图象如图所示.
当直线 经过A点时,可得 ;
当直线 经过B点时,可得 .
由图象可知,符合题意的b(b<3)的取值范围为 .

【预测题】13、如图,已知抛物线与x轴交于点A(-2,0),B*,与y轴交于点C*.
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

解:(1)设抛物线解析式为 ,把 代入得 .
,顶点
(2)假设满足条件的点 存在,依题意设 ,
由 求得直线 的解析式为 ,
它与 轴的夹角为 ,设 的中垂线交 于 ,则 .
则 ,点 到 的距离为 .
又 . .
平方并整理得: , .
存在满足条件的点 , 的坐标为 .

(3)由上求得 .
①若抛物线向上平移,可设解析式为 .
当 时, .
当 时, . 或 .

②若抛物线向下移,可设解析式为 .
由 ,
有 . , .
∴向上最多可平移72个单位长,向下最多可平移 个单位长.
【预测题】14、如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.
若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.

解:(1)过点D作DE⊥x轴,垂足为E,则△PED∽△COP,∴
, ,故D(t+1, )
(2)S=
∴当t=2时,S最大,最大值为1
(3)∵∠CPD=900,∴∠DPA+∠CPO=900,∴∠DPA≠900,故有以下两种情况:
①当∠PDA=900时,由勾股定理得 ,又 ,
, ,
即 ,解得 , (不合题意,舍去)
②当∠PAD=900时,点D在BA上,故AE=3-t,得t=3
综上,经过2秒或3秒时,△PAD是直角三角形;
(4) ;
【预测题】15、设抛物线 与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90°。
(1)求m的值;
(2)求抛物线的解析式,并验证点D(1,-3 )是否在抛物线上;
(3)已知过点A的直线 交抛物线于另一点E. 问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标. 若不存在,请说明理由。

解:(1)令x=0,得y=*∴C(0,-2)
∵∠ACB=90°,CO⊥AB ,∴△AOC ∽△COB ,∴OA•OB=OC2
∴OB= ∴m=*
(2)将A(-1,0),B*代入 ,解得
∴抛物线的解析式为 ……(2分)
当x=1时, =-3,∴点D(1,-3)在抛物线上。
(3)由 得 ,∴E*
过E作EH⊥x轴于H,则H*,
∴ AH=EH=* ∴∠EAH=45°
作DF⊥x轴于F,则F*
∴BF=DF=* ∴∠DBF=45°
∴∠EAH=∠DBF=45°
∴∠DBH=135°,90°<∠EBA<135°
则点P只能在点B的左侧,有以下两种情况:
①若△DBP1∽△EAB,则 ,∴
∴ ,∴ ……(2分)
②若△ ∽△BAE,则 ,∴
∴ ∴ ……(2分)
综合①、②,得点P的坐标为:

【预测题】16、如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似?

解:(1)四边形ABCE是菱形。
∵△ECD是由△ABC沿BC平移得到的,∴EC‖AB,且EC=AB,
∴四边形ABCE是平行四边形,又∵AB=BC,∴四边形ABCE是菱形 .
(2)①四边形PQED的面积不发生变化。
方法一:∵ABCE是菱形,∴AC⊥BE,OC=12AC=3,∵BC=5,∴BO=4,
过A作AH⊥BD于H,(如图1).∵S△ABC=12BC×AH=12AC×BO,
即:12×5×AH=12×6×4,∴AH=*
【或 ∵∠AHC=∠BOC=90°,∠BCA公用,∴△AHC∽△BOC,∴AH:BO=AC:BC,
即:AH:4=6:5,∴AH=245.】
由菱形的对称性知,△PBO≌△QEO,∴BP=QE,
∴S四边形PQED=12(QE+PD)×QR=12(BP+PD)×AH=12BD×AH=12×10×245=*
方法二: 由菱形的对称性知,△PBO≌△QEO,∴S△PBO= S△QEO,
∵△ECD是由△ABC平移得到得,∴ED‖AC,ED=AC=6,
又∵BE⊥AC,∴BE⊥ED,
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED
=12×BE×ED=12×8×6=*

②方法一:如图2,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,
即∠2=∠1,∴OP=OC=3,过O作OG⊥BC于G,则G为PC的中点,△OGC∽△BOC,
∴CG:CO=CO:BC,即:CG:3=3:5,∴CG=95,
∴PB=BC-PC=BC-2CG=5-2×95=75.
方法二:如图3,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,∴∠2>∠3,
∴∠2不与∠3对应,∴∠2与∠1对应,
∴QR:BO=PR:OC,即:245:4=PR:3,∴PR=*
过E作EF⊥BD于F,设PB=x,则RF=QE=PB=x,
DF=ED2-EF2 =62-*2 =*
∴BD=PB+PR+RF+DF=x+185+x+185=10,x=*
方法三: 如图4,若点P在BC上运动,使点R与C重合,
由菱形的对称性知,O为PQ的中点,∴CO是Rt△PCQ斜边上的中线,
∴CO=PO,∴∠OPC=∠OCP,此时,Rt△PQR∽Rt△CBO,
∴PR:CO=PQ:BC,即PR:3=6:5,∴PR=*
∴PB=BC-PR=5-185=75.

更多话题
上一篇:数学跟不上,初二了,很烦恼啊!!求大神支个招? 下一篇:代数式3X+6的值不小于代数式5X+2的值?,初中数学应用题:当X取何正整数时
[书法天才科教网 _ www.softcov.com] 本站信息来自网友发布,本站无法保证其内容真实性,请用户一定仔细辨别。联系QQ:885 971 98